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Protein folding simulations in a deformed energy landscape
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Abstract. A modified version of stochastic tunneling, a recently introduced global optimization technique,
is introduced as a new generalized-ensemble technique and tested for a benchmark peptide, Met-enkephalin.
It is demonstrated that the new technique allows to evaluate folding properties and especially the glass
temperature Tg of this peptide.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 87.16.Ac Theory
and modeling; computer simulation

Numerical simulations of biological molecules can be ex-
tremely difficult when the molecule is described by “realis-
tic” energy functions where interactions between all atoms
are taken into account. For a large class of molecules, in
particular for peptides or proteins, the various competing
interactions lead to frustration and a rough energy land-
scape. At low temperatures canonical simulations will get
trapped in one of the multitude of local minima separated
by high energy barriers and physical quantities cannot be
calculated accurately. One way to overcome this difficulty
in protein simulations is by utilizing so-called generalized
ensembles [1], which are based on a non-Boltzmann prob-
ability distribution. Multicanonical sampling [2] and sim-
ulated tempering [3] are prominent examples of such an
approach. Application of these techniques to the protein
folding problem was first addressed in reference [4] and
their usefulness for simulation of biological molecules and
other complex systems [4–8] has become increasingly rec-
ognized.

However, generalized-ensemble methods are not with-
out problems. In contrast to canonical simulations the
weight factors are not a priori known. Hence, for a com-
puter experiment one needs estimators of the weights, and
the problem of finding good estimators is often limiting the
use of generalized-ensemble techniques. Here we describe
and test a new generalized ensemble where determination
of the weights is by construction of the ensemble simple
and straightforward. Our method is based on a recently
introduced global optimization technique, stochastic tun-
neling [9].

Canonical simulations of proteins at low temperature
are hampered by the roughness of the potential energy sur-
face: local minima are separated by high energy barriers.
To enhance sampling we propose to weight conformations
not with the Boltzmann factor wB(E) = exp(−E/kBT ),
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but with a weight

wf(E) = exp(f(E)/kBT ). (1)

Here, T is a low temperature, kB the Boltzmann constant,
and f(E) is a non-linear transformation of the potential
energy onto the interval [0,−1] chosen such that the rela-
tive location of all minima is preserved. The physical idea
behind such an approach is to allow the system at a given
low temperature T to “tunnel” through energy barriers of
arbitrary height. A transformation with the above char-
acteristics can be realized by

f1(E) = −e−(E−E0)/nF . (2)

Here, E0 is an estimate for the ground state and nF the
number of degrees of freedom of the system. Equation (2)
is a special choice of the transformation recently intro-
duced under the name “stochastic tunneling” [9] to the
corresponding problem of global minimization in complex
potential energy landscapes. One can easily find further
examples for transformations with the above stated prop-
erties, for instance,

f2(E) = −(1 + (E −E0)/nF)−1. (3)

We will restrict our investigation to these two transforma-
tions without claiming that they are an optimal choice.

A simulation in the above ensemble, defined by the
weight of equation (1) with a suitable chosen non-linear
transformation f(E), will sample a broad range of ener-
gies. Hence, application of re-weighting technique [10] al-
lows to calculate the expectation value of any physical
quantity O over a large range of temperatures T by

〈O〉T =

∫
dEO(E)Pf (E)w−1

f (E)e−E/kBT∫
dEPf(E)w−1

f (E)e−E/kBT
· (4)
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In this point our method is similar to other generalized-
ensemble techniques such as the multicanonical sam-
pling [2], however, our method differs from them in that
the weights are explicitly given by equation (1). One only
needs to find an estimator for the ground-state energy
E0 in the transforming functions f1(E) or f2(E) (see
Eqs. (2, 3)) which in earlier work [11,12] was found to
be much easier than the determination of weights for mul-
ticanonical algorithm [2] or simulated tempering [3].

The new simulation technique was tested for Met-
enkephalin, one of the simplest peptides, which has be-
come a often used model to examine new algorithms.
Met-enkephalin has the amino-acid sequence Tyr-Gly-
Gly-Phe-Met. The potential energy function Etot that was
used is given by the sum of the electrostatic term Ees, 12-6
Lennard-Jones term EvdW, and hydrogen-bond term Ehb

for all pairs of atoms in the peptide together with the
torsion term Etors for all torsion angles:

Etot = Ees +EvdW +Ehb +Etors, (5)

Ees =
∑
(i,j)

332qiqj
εrij

, (6)

EvdW =
∑
(i,j)

(
Aij
r12
ij

− Bij
r6
ij

)
, (7)

Ehb =
∑
(i,j)

(
Cij
r12
ij

− Dij

r10
ij

)
, (8)

Etors =
∑
l

Ul (1± cos(nlχl)) , (9)

where rij is the distance between the atoms i and
j, and χl is the lth torsion angle. The parameters
(qi, Aij , Bij , Cij , Dij , Ul and nl) for the energy function
were adopted from ECEPP/2 [13].

The computer code SMC1 was used. The simulations
were started from completely random initial conforma-
tions (Hot Start) and one Monte-Carlo sweep updates ev-
ery torsion angle of the peptide once. The peptide bond
angles ω were fixed to their common value 180◦, which
left 19 torsion angles (φ, ψ, and χ) as independent de-
grees of freedom (i.e., nF = 19). The interaction of the
peptide with the solvent was neglected in the simulations
and the dielectric constant ε set equal to 2. In short pre-
liminary runs it was found that T = 8 K was the optimal
temperatures for simulations relying on the transforma-
tion f1(E) (Eq. (2)), and T = 6 K for simulations rely-
ing on the second chosen transformation f2(E) (Eq. (3)).
The free parameter E0 was set in equation (2) or (3) to
E0 = −10.72 kcal/mol, the ground state energy as known
from previous work. In addition, simulations were also per-
formed where E0 was dynamically updated in the course
of the simulation and set to the lowest ever encountered
energy. In these runs the (known) ground state was found
in less than 5000 MC sweeps. Hence, determination of
the weights is easier than in other generalized-ensemble

1 The program SMC was written by Dr. Frank Eisenmenger
(eisenmenger@rz.hu-berlin.de).

techniques since in earlier work [4] it was found that at
least 40 000 sweeps were needed to calculate multicanoni-
cal weights. We remark that a Monte-Carlo sweep in both
algorithm takes approximately the same amount of CPU
time.

All thermodynamic quantities were then calculated
from a single production run of 1 000 000 MC sweeps which
followed 10 000 sweeps for thermalization. At the end of
every sweep we stored the energies of the conformation
and the radius of gyration

R =
1

N2
atoms

Natoms∑
i,j

(ri − rj)2 (10)

for further analyses.
In order to demonstrate the dynamical behavior of

the algorithm the “time series” and histograms of poten-
tial energy are shown for both choices of the transform-
ing functions f1(E) (Fig. 1) and f2(E) (Fig. 2). Both
choices of the non-linear transformation with which the
energy landscape was deformed in the simulations lead
to qualitatively the same picture. In Figures 1a and 2a,
respectively, one can see that the whole energy range be-
tween E < −10 kcal/mol (the ground state region) and
E ≈ 20 kcal/mol (high-energy, coil states) is sampled.
However, unlike in the multicanonical algorithm the en-
ergies are not sampled uniformly and low-energy states
appear with higher frequency than high energy states.
However, as one can see from the logarithmic scale of
Figures 1b and 2b, where the histograms are displayed for
these simulations, high-energy states are only suppressed
by three orders of magnitude and their probability is still
large enough to allow crossing of energy barriers. Hence
large parts of the configuration space are sampled by our
method and it is justified to calculate from these simula-
tions thermodynamic quantities by means of re-weighting,
see equation (4).

Here, the average radius of gyration 〈R〉, which is is a
measure for the compactness of protein configurations and
defined in equation (10), was calculate for various temper-
atures. In Figure 3 the results for the new ensemble, using
the defining non-linear transformations f1(E) or f2(E),
are compared with the ones of a multicanonical run with
equal number of Monte-Carlo sweeps. As one can see, the
values of 〈R〉(T ) agree for all three simulations over the
whole temperature range. Hence, it is obvious that simula-
tions in the new ensemble are indeed well able to calculate
thermodynamic averages over a wide temperature range.

After having established the new techniques as a pos-
sible alternative to other generalized-ensemble techniques
(such as multicanonical sampling or simulated tempering)
its usefulness shall be further demonstrated by calculating
the free energy of Met-enkephalin as a function of radius
of gyration R:

G(R) = −kBT logP (R) (11)

where

P (R) = Pf(R)w−1
f (E(R))e−E(R)/kBT . (12)
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Fig. 1. “Time series” (a) of potential energy E of Met-
enkephalin for a simulation in a generalized ensemble defined
by the transformation f1(E) of equation (2) and the corre-
sponding histogram (b) of potential energy.

Here, a normalization is chosen where the minimal value
of Gmin(R) = 0. The chosen temperature was T = 230 K,
which was found in earlier work [7] as the folding tem-
perature Tf of Met-enkephalin. The results, which rely on
the transformation f1(E) of the energy landscape given by
equation (2), are displayed in Figure 4. At this tempera-
ture one observes clearly a “funnel” towards low values of
R which correspond to compact structures. Such a funnel-
like landscape was already observed in reference [8] for
Met-enkephalin, utilizing a different set of order param-
eters, and is predicted by the landscape theory of fold-
ing [14].

The essence of the funnel landscape idea is competi-
tion between the tendency towards the folded state and
trapping due to ruggedness of the landscape. One way to
measure this competition is by the ratio [15]:

Q =
E −E0√
E2 − Ē2

, (13)
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Fig. 2. “Time series” (a) of potential energy E of Met-
enkephalin for a simulation in a generalized ensemble defined
by the transformation f2(E) of equation (3) (a) and the corre-
sponding histogram (b) of potential energy.

22

24

26

28

30

32

34

36

0 100 200 300 400 500 600 700 800 900 1000

<
R

>
 [A

ng
st

ro
em

^2
]

 T [K]

MuCa
f_1
f_2

Fig. 3. Average radius of gyration 〈R〉 (in Å
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Fig. 4. Free energy G(R) as a function of the radius of gyration
R for T = 230 K. The results rely on a generalized-ensemble
simulation based on the transformation f1(E) of the energy
landscape s defined in equation (2).

where the bar denotes averaging over compact config-
urations. The landscape theory asserts that good fold-
ing protein sequences are characterized by large values
of Q [15]. Using the results of our simulations and defin-
ing a compact structure as one where R(i) ≤ 23 Å, we
find E −E0 = 13.96(3) kcal/mol, E2 − Ē2 = 0.49(2),
from which we estimate for the above ratio Q = 20.0(5).
This value indicates that Met-enkephalin is good folder
and is consistent with earlier work [7] where we evalu-
ated an alternative characterization of folding properties.
Thirumalai and collaborators [16] have conjectured that
the kinetic accessibility of the native conformation can be
classified by the parameter

σ =
Tθ − Tf

Tθ
, (14)

i.e., the smaller σ is, the more easily a protein can fold.
Here Tf is the folding temperature and Tθ the collapse
temperature. With values for Tθ = 295 K and Tf = 230 K,
as measured in reference [7], one has for Met-enkephalin
σ ≈ 0.2, indicating again that the peptide has good folding
properties.

Yet another characterization of folding properties relies
on knowledge of the glass temperature Tg and is closely
related to equation (13). As the number of available states
gets reduced with the decrease of temperature, the pos-
sibility of local trapping increases substantially. Glassy
behavior appears when the residence time in some local
traps becomes of the order of the folding event. Folding dy-
namics is now non-exponential since different traps have
different escape times [17]. For temperatures above the
glass transition temperature Tg, the folding dynamics is
exponential and a configurational diffusion coefficient av-
erage the effects of the short lived traps [18]. It is expected
that for a good folder the glass transition temperature, Tg,
where glass behavior sets in, has to be significantly lower
than the folding temperature Tf , i.e. a good folder can be

characterized by the relation [19]

Tf

Tg
> 1. (15)

I present here for the first time a numerical estimate of
this glass transition temperature for the peptide Met-
enkephalin. The calculation of the estimate is based on
the approximation [19]

Tg =

√
E2 − Ē2

2kBS0
, (16)

where the bar indicates again averaging over compact
structures and S0 is the entropy of these states chosen such
that the entropy of the ground state becomes zero. The re-
sults of the simulation in the new ensemble defined by the
transformation f1(E), leads to a value of s0 = 2.3(7). To-
gether with the above quoted value for E2− Ē2 = 0.49(2)
(in (kcal/mol)2) one therefore finds as an estimate for the
glass transition temperature

Tg = 160(30) K. (17)

Since it was found in earlier work [7] that Tf = 230(30),
it is obvious that the ratio Tf/Tg > 1 and again one finds
that Met-enkephalin has good folding properties. Hence,
we see that there is a strong correlation between all three
folding criteria.

Let me summarize my results. I have proposed to uti-
lize a recently introduced global optimization technique,
stochastic tunneling, in such a way that it allows calcula-
tion of thermodynamic quantities. The new generalized-
ensemble technique was tested for a benchmark peptide,
Met-enkephalin. It was demonstrated that the new tech-
nique allows to evaluate the folding properties of this pep-
tide and an estimate for the glass transition temperature
Tg in that system was presented. Currently I am evalu-
ating the efficiency of the new method in simulations of
larger molecules.

This article was written in part when I was visitor at the In-
stitute of Physics, Academia Sinica, Taipei, Taiwan. I like to
thank the Institute and specially C.K. Hu, head of the Labo-
ratory for Statistical and Computational Physics, for the kind
hospitality extended to me. Financial support from a Research
Excellence Fund of the State of Michigan is gratefully acknowl-
edged.
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